
Independence of Parallel Postulate

May 14, 2013

1 Consistency of hyperbolic geometry

For thousands of years people believe and continue to believe that there is no contradiction
in Euclidean geometry, that is, Euclidean geometry is consistent. How about hyperbolic
geometry? Is there any contradiction in hyperbolic geometry?

Applied geometry (engineering) is about lines that we can draw. Pure geometry is about
ideal lines which are concepts, not physical objects. Physical experiment can test the validity
of physical systems, but cannot verify pure geometry. The only experiment that can perform
on ideal lines are thought-experiments.

Can we conceive of a non-Euclidean geometry? Kant said no at his time (any geometry
other than Euclidean geometry is inconceivable). Is hyperbolic geometry consistent? Nowa-
days this is referred to as a question in metamathematics, that is, a question outside of a
mathematical system about the system itself. The question is not about lines or points or
other geometric entities; it is about the whole system of hyperbolic geometry.

Metamathematical Theorem. If Euclidean geometry is consistent, then so is hyperbolic
geometry.

To prove Metamathematical Theorem, we have to ask ourselves, What is a “line” in
hyperbolic geometry – in fact, what is the hyperbolic plane? The honest answer is that
we don’t know; it is just a formal system about undefined terms such as “points, lines”
satisfying certain relations such as “betweeness, congruence, continuity” and “hyperbolic
parallelism.” Then how shall we visualize hyperbolic geometry? In mathematics, as in any
field of research, posing the right question is just as important as finding answers.

We have seen that the Euclidean parallel postulate is independent of the incidence axioms
by exhibiting three-point and five-point models of incidence geometry that are not Euclidean.
We want to know whether the parallel postulate is independent of a much larger system of
axioms, namely, the neutral geometry. Here we can show that it is, by the same method –
by exhibiting models for hyperbolic geometry.

2 Beltrami-Klein model (Klein model)

We fix once and all a circle γ in the Euclidean plane with center O and radius OR. The
interior of γ is the set of points X such that OX < OR. A chord of γ is a segment AB
in the Euclidean plane joining two endpoints A,B on γ. The open segment of chord AB,
denoted (AB), is called an open chord of γ. In Klein model points and lines are the interior
points and open chords of γ respectively, and the incidence relation between points and lines
are belongness. Poin P lies in line (AB) means that P ∈ AB in the Euclidean plane and
A ∗ P ∗B. See Figure 1
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Figure 1: Klein model

3 Poincaré model

A disk model due to Henri Poincaré (1854-1912) also represents a hyperbolic plane whose
points are interior points of a Euclidean circle γ, whose lines are those open circular
arcs orthogonal to γ, and the incidence is the belongness of points and open circular arcs.

The interpretation of congruence for segments in the Poincaré model is complicated,
being based on a way of measuring length that is different from the usual Euclidean way.
Congruence of angles has the usual Euclidean meaning and it is the main advantage of
the Poincaré model over the Klein model. Specifically, if two directed circular arcs intersect
at a point A, the number of degrees in the angle they make is by definition the number of
degrees in the angle between their tangent rays at A; if one directed circular arc intersects an
ordinary ray at A, the number of degrees in the angle they make is by definition the number
degrees in the angle between the tangent ray and the ordinary ray at A.

Two Poincarée lines are parallel if they have no point in common. In Poincaré model
all axioms of hyperbolic geometry are translated into statements in Euclidean geometry.
Hence the Poincaré model furnishes a proof that if Euclidean geometry is consistent, so is
hyperbolic geometry.

The interior upper half-plane also serves as a model for hyperbolic plane, where points
are ordinary points in the open upper half-plane and lines are those rays perpendicular to
the x-axis and semicircle orthogonal to the x-axis.

4 Model of hyperbolic plane from physics

Consider the hyperboloid Σ defined by

x2 + y2 − t2 = −1,

which can be thought as “sphere” centered at the origin O = (0, 0, 0) with radius ı =
√−1.

Let Π denote the plane t = 0 and ∆ the disk of Π with center O and unit radius. The
component

Σ := {(x, y, t) ∈ R3 : x2 + y2 − t2 = −1, t > 0}
can serve as a model for hyperbolic plane, where points are ordinary points of Σ and lines
are nonempty intersections of Σ and Euclidean planes through O.

5 Inversion in circles

Proposition 5.1. Given a circle γ of radius r with center O in the Euclidean plane, and a
chord T1T2 not to be a diameter of γ. Let P be the intersection of the tangent lines of γ at
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T1, T2, called the pole of T1T2 with respect to γ. Let P ′ be the middle point of T1T2, and M
the middle point of segment OP . Then

(a) O ∗ P ′ ∗ P and |OP | · |OP ′| = r2.
(b) |PT1| = |PT2|, |OM | = |MP | = |MT1| = |MT2|.

MP’
O P

T1

T2

Figure 2: Inversion about circle

Proof. (a) It is clear that P ′ is between O and P , that is, O ∗ P ′ ∗ P . Note that ∠OP ′T1

and ∠T1P
′P are right angles, and the right triangles ∆OP ′T1, ∆OT1P have the common

angle ∠P ′OT1 = ∠T1OP . We have ∆OP ′T1 ∼ ∆OT1P . Then the corresponding sides of
∆OP ′T1, ∆OT1P are proportional. Hence |OP ′| : |OT1| = |OT1| : |OP |, where |OT1| = r,
that is, |OP | · |OP ′| = r2.

(b) Clearly, |PT1| = |PT2|. Since ∆OT1P and ∆OT2P are right triangles, the points
O, T1, P, T2 lie on a common circle of diameter OP . So OM ∼= MP ∼= MT1

∼= MT2.

Definition 1. Let γ be a circle of radius r with center O in the Euclidean plane. For each
point P 6= O, its inverse with respect to γ is the unique point P ′ on the ray r(O,P ) such
that

|OP | · |OP ′| = r2.

Let E denote the Euclidean plane and Ẽ = E∪{∞}. The map from Ẽ to itself by P 7→ P ′,
O 7→ ∞, ∞ 7→ O is called the inversion in γ.

Proposition 5.2. Let P, P ′ be inverses each other about the inversion in circle γ with center
O. Then

(a) P ′ = P ⇔ P ∈ γ.
(b) P is inside γ ⇔ P ′ is outside γ.

Proof. Trivial by definition.

Lemma 2 (Circle-Cut Product Property). Let P be a point not on a circle γ. Given three
lines passing through P ; the first one intersects γ in a pair of points A1, A2, the second
intersects γ in a another pair of points B1, B2, and the third is tangent to γ at a point D;
see Figure 3. Then

|PA1| · |PA2| = |PB1| · |PB2| = |PD|2.
The constant is called the power of P with respect to γ.

Proof. Since angles that are inscribed in a circle and subtended the same arc are congruent,
then ∠A1A2B1

∼= ∠A1B2B1 and ∠A2A1B2
∼= ∠A2B1B2. Thus ∆PA2B1 ∼ PB2A1. See

Figure 3. So the corresponding sides are proportional, that is, |PA1| : |PB1| = |PB2| : PA2|.
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Figure 3: Circle cut

Let line PO intersect γ at in a pair of points C1, C2 with P ∗ C1 ∗O ∗ C2. Then ∆PDO
is a right triangle. By the Pythagorean theorem we have

|PD|2 = |OP |2 − |OD|2
= (|OP | − |OD|)(|OP |+ |OD|)
= (|OP | − |OC1|)(|OP |+ |OC2|)
= |PC1| · |PC2|.

Proposition 5.3 (Orthogonality and Cocyleness of Inverse Points). Given a circle γ of
radius r with center O, and two points P, P ′ inverse each other with respect to γ. Let δ be a
circle through P , intersecting γ at T1, T2. Then γ, δ meet orthogonally if and only if δ passes
through P ′.

Proof. “⇒”: Let δ intersect γ orthogonally at T1, T2. Then the tangents to δ at T1, T2 pass
through O. So O lies outside δ, and ray r(O,P ) cuts δ at a point Q. The Circle-Cut Product
Property implies |OP | · |OQ| = |OS1|2 = r2. Hence Q is the inverse of P with respect to γ,
that is, P ′ = Q ∈ δ. See Figure 4.
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Figure 4: Poincaré lines through a point P .

“⇐”: Let δ pass through P ′. Then the center C of δ lies on the perpendicular bisector
of PP ′. Note that either O ∗ P ∗ P ′ or O ∗ P ′ ∗ P . Clearly, point O is outside δ. Then
through O there exist two tangents to δ at T ∗

1 , T ∗
2 . Note that T ∗

1 , T ∗
2 are not assumed on γ.

On the one hand, |OP | · |OP ′| = |OT ∗
1 |2 = |OT ∗

2 |2 by the Cut-Circle Product Property. On
the other hand, |OP | · |OP ′| = r2 since P, P ′ are inverses each other with respect to γ. Then
|OT ∗

1 | = |OT ∗
2 | = r. So T ∗

1 = T1 and T ∗
2 = T2. Of course, the tangent ray r(T1, O) of δ at T1

is orthogonal to γ at T1. This means that δ is orthogonal to γ. See Figure 4.

4



Corollary 5.4 (Inversions in two orthogonal circles map each of them onto itself). A circle
δ is orthogonal to a circle γ ⇔ δ is mapped onto itself by inversion in γ.

Proof. Let P be a point on δ and P ′ its inverse in γ. Then O,P, P ′ are collinear. If δ is
orthogonal to γ, then P ′ lies on δ by Proposition 5.3.

Conversely, if the inversion in γ maps δ onto itself, of course δ passes through P, P ′, then
δ is orthogonal to γ by Proposition 5.3.

Given a circle γ; the open disk bounded by γ is called a Poincaré disk. Given two
points A,B inside γ, there exists a unique circle σ through A,B and orthogonal to γ. The
circular arc of σ inside γ is called a Poincaré line or P -line (= line in hyperbolic geometry)
through points A,B in the Poincaré disk bounded by γ. (Axiom 1-3 of incidence geometry
are satisfied.) The circular arc between A and B on the P -line through A,B is called a
Poincaré segment or P -segment.

Definition 3. Let A,B be two points inside a circle γ, and P,Q the endpoints of the
hyperbolic line through A,B. The cross-ratio of A,B is defined as

(AB, PQ) :=
|AP | · |BQ|
|AQ| · |BP | .

The hyperbolic distance between two points A,B is defined as

d(A,B) := | log(AB, PQ)|.

Notice that distance does not depend on the the order of A,B. In fact, if (AB, PQ) = x
then (BA, PQ) = 1/x, so

d(B, A) = | log(1/x)| = | − log x| = | log x| = d(A,B).

Two P -segments AB, CD are said to be Poincaré-congruent if d(A,B) = d(C, D).
With this interpretation, Congruence axiom 2 is immediately verified, for the relation of
equal hyperbolic distance is an equivalence relation.

P

O

Figure 5: Limiting parallel Poincaré lines.

Let A,B,C be points on a P -line inside the Poincaré disk bounded by γ, having end
points P,Q on γ. We may assume the order P ∗ A ∗ B ∗ C ∗Q on the P -line. See Figure 6.
We have cross-ratio (AB, PQ) = (|AP | · |BQ|)/(|AQ| · |BP |) < 1. Likewise, (AC, PQ) < 1
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and (BC, PQ) < 1. Their logs are negative and

d(A,B) + d(B, C) = − log(AB, PQ)− log(BC, PQ)

= − log[(AB, PQ) · (BC, PQ)]

= − log

( |AP |
|AQ|

|BQ|
|BP | ·

|BP |
|BQ|

|CQ|
|CP |

)

= − log

( |AP |
|AQ| ·

|CQ|
|CP |

)

= d(A,C).

Congruence axiom 3 (addition rule) is satisfied.

Definition 4. Let O be a point and k a positive number. The dialation with center O
and ratio k is the transformation of the Euclidean plane that fixes O and maps each point
P 6= O to a unique point P ∗ on ray r(O,P ) such that OP ∗ ∼= k ·OP .

Dilation with center O and ratio k maps lines to lines, circles to circles, and preserves
angles. In fact, choose rectangular coordinates so that O is the origin. The dilation is the
map (x, y) 7→ (x′, y′) = k(x, y). Then x = x′/k, y = y′/k. For line l : ax + by = c, its
image under the dilation is ax′/k + by/k = c, which is the line ax′ + by′ = kc. For a circle
γ : (x − a)2 + (y − b)2 = r2, its image is (x′/k − a)2 + (y′/k − b)2 = r2, which is the circle
(x′ − ka)2 + (y′ − kb)2 = (kr)2.

Proposition 5.5. Let γ be a circle of radius r and center O. Let δ be a circle with center
C such that O is outside δ. Set k = r2/p, where p is the power of O with respect to δ.

(a) Then the image δ′ of δ under inversion in γ is a circle δ∗, obtained from δ by the
dilation with center O and ratio k.

(b) If P ∈ δ and P ′ its inverse in γ, then the tangent t to δ at P and the tangent t′ to δ′

at P ′ are symmetric about the perpendicular bisector of segment PP ′.

Proof. (a) Let P be a point on δ and P ′ its inverse with respect to γ. Let ray r(O,P ) meet
circle δ at another point Q (with Q = P when r(O,P ) is tangent to δ). Then

|OP ′|
|OQ| =

|OP ′|
|OQ| ·

|OP |
|OP | =

r2

p
= k.

Since P ′, Q ∈ r(O,P ), we have OP ′ = k · OQ, that is, the vector
−−→
OP ′ is the dilation of

the vector
−→
OQ with ratio k. This means that P ′ is on the circle δ∗ obtained from δ by the

dilation with center O and ratio k. So δ′ = δ∗. The center C∗ of δ∗ is the same dilation of
the center C of δ, that is, C∗ ∈ r(O,C) and OC∗ = k ·OC.

(b) Since OP ′ is the dilation of OQ, the tangent t′ of δ′ at P ′ is parallel to the tangent
t′′ of δ at Q. Let t meet t′′ at R and meet t′ at S. Then ∠PP ′S ∼= ∠PQR ∼= ∠P ′PS. So
∆PP ′S is an isosceles triangle. Hence t, t′ are symmetric about the perpendicular bisector
of PP ′. See Figure 7.
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Figure 7: Image of a circle by inversion in γ is a circle.

Lemma 5. Given a circle γ with center O, and two points P,Q such that O,P,Q are not
collinear. Let P ′, Q′ be inverses of P,Q in γ respectively. Then ∆OPQ ∼ ∆OQ′P ′.

Q

P

Q’

O P’

Figure 8: Image of triangle under inversion in circle is similar.

Proof. Since P ′ ∈ r(O,P ) and Q′ ∈ r(O,Q), the triangles ∆OPQ, ∆OQ′P ′ have the common
angle ∠POQ = ∠P ′OQ′. Note that |OP | · |OP ′| = r2 = |OQ| · |OQ′|, that is,

|OP | : |OQ′| = |OQ| : |OP ′|.

This means that ∆OPQ ∼ ∆OQ′P ′.

Proposition 5.6. Given a circle γ with center O. Let l be a line not passing through O.
Then the image of l under inversion in γ is a circle δ through O, but having O removed, and
its diameter through O is perpendicular to l.

Proof. Let OP be the segment perpendicular to l with foot P on l. Let X be an arbitrary
point on l. Let P ′, X ′ be the inverse points of P,X in γ respectively. Note that P ′ ∈ r(O,P )
and X ′ ∈ r(O,X). Then ∆OPX ∼ ∆OX ′P ′. So ∠OX ′P ′ ∼= ∠OPX is a right angle. Thus
X ′ is on the circle δ with diameter OP ′.

Corollary 5.7. Given a circle γ with center O. Let δ be a circle passing through O. Then
the image of δ − {O} under inversion in γ is a line l not through O, and l is parallel to the
tangent of δ at O.

Proof. Trivial.
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Figure 9: Image of a line under inversion in γ is a circle through center of γ.

Proposition 5.8. The directed angle of two circles at their intersection point are preserved
by inversion in circle.

Proof. Let γ be a circle with center O. Let σ, δ be two circles intersecting at a point P 6= O.
Let σ′, δ′, P ′ be the images of σ, δ, P under inversion in γ respectively. Given tangent rays s
of σ and t of δ at P , and tangent rays s′ of σ′ and t′ of δ′ at P ′. Then rays s, s′ are symmetric
about the perpendicular bisector of PP ′; so are the rays t, t′. Hence the angle between s′

and t′ are congruent to the angle between s and t.

Proposition 5.9. Given a circle γ with center O. Let A,B,C,D be four points distinct
from O, and A′, B′, C ′, D′ their inverses in γ respectively. Then the cross-ratio is preserved
by inversion in γ, that is,

(AB, CD) = (A′B′, C ′D′).

Proof. Recall (AB, CD) := (|AC|·|BD|)/(|AD|·|BC|). Consider similar triangles ∆OAC ∼
∆OC ′A′ and ∆OAD ∼ ∆OD′A′. We have

|AC| : |OA| = |A′C ′| : |OC ′|, |AD| : |OA| = |A′D′| : |OD′|.
Then |AC|

|AD| =
|A′C ′|
|A′D′| ·

|OD′|
|OC ′| . (1)

Likewise |BD|
|BC| =

|B′D′|
|B′C ′| ·

|OC ′|
|OD′| . (2)

Multiplying (1) and (2), we obtain

(AB, CD) =
|AC|
|AD| ·

|BD|
|BC| =

|A′C ′|
|A′D′| ·

|B′D′|
|B′C ′| = (A′B′, C ′D′).

Proposition 5.10. Given two orthogonal circles γ, δ with centers O,C and radii r, d respec-
tively. Let σ be a circle and l a line, both are orthogonal to γ. Let σ′, l′ be respectively the
images of σ, l under inversion in δ.

(a) Then the inversion in δ maps γ onto γ, and maps the interior of γ onto itself.
(b) If σ does not pass through C, then σ′ is a circle orthogonal to γ. If σ passes through

C, then σ′ is a line passing through the center O of γ.
(c) If l does not pass through C, then l′ is a circle orthogonal to γ. If l passes through C,

then l = OC and l′ = l.
(d) Inversion in δ preserves incidence, betweenness, and congruence in the sense of the

Poincaré disk model inside γ.
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Proof. (a) The former part is implied by the fact that circle orthogonal to an inversion circle
is fixed by the inversion, namely, Corollary 5.4. For the latter part, let P be a point inside
γ and P ′ its inverse in δ. Let r(C, P ) intersect γ at points Q,Q′. See Figure 10. Since γ is

γ

Q’

P Q
P’

O C

δ

Figure 10: Inversion in δ maps interior of γ to itself.

orthogonal to δ, the point Q′ must be the inverse of Q in δ by Proposition 5.3. Then

|CP | · |CP ′| = |CQ| · |CQ′| = d2.

Note that C, P, P ′, Q, Q′ are collinear and Q∗P ∗Q′. We may assume C ∗Q∗P ∗Q′ without
loss of generality. Then |CQ| < |CP | < |CQ′|. Thus d2/|CQ| > d2/|CP | > d2/|CQ′|, which
is the same as |CQ′| > |CP ′| > |CQ|. This means that C ∗Q ∗ P ′ ∗Q′. So P ′ is inside γ.

(b),(c) Trivial.
(d) The circular arc of σ inside γ is a P -line, and is mapped to the circular arc of σ′

inside γ, which is another P -line. Given a P -line through A,B inside γ with end points P,Q
on γ. The P -line through the images A′, B′ of A,B by inversion in δ have end points P ′, Q′

on γ. Since (AB, PQ) = (A′B′, P ′Q′), we see that

d(A,B) = | log(AB, PQ)| = | log(A′B′, P ′Q′)| = d(A′, B′).

So P -segment AB is congruent to P -segment A′B′ hyperbolically. Let A ∗B ∗D. Then

d(A′, D′) = d(A,D) = d(A,B) + d(A′, B′) = d(A′, B′) + d(B′, D′)

So B′ is between A′ and D′.

Verification of Congruence Axiom 6 (SAS). Given P -triangles ∆ABC and ∆XY Z
inside a circle γ of radius r with center O, such that d(A,B) = d(X,Y ), ∠A ∼= ∠X, and
d(A,C) = d(X,Z). We need to show that ∆ABC and ∆XY Z are P -congruent, that is, the
corresponding sides have the same hyperbolic lengths and the corresponding angles have the
same measures.

Case 1. A = X = O (the center of γ).
Then d(O,B) = d(O, Y ), d(O,C) = d(O,Z), and ∠BOC ∼= ∠Y OZ. Let P,Q be end

points of P -line through points O,B and P ∗B ∗O ∗Q. Then

d(O,B) = log(|OP | · |BQ|/|OQ| · |BP |) = log[(r + |OB|)/(r − |OB|).

It follows that |OB| = r(ed(O,B) − 1)/(ed(O,B) + 1). Hence |OB| = |OY |, |OC| = |OZ|, and
∠BOC ∼= ∠Y OZ. There exists a unique rigid motion (rotation about O, combined with a
reflection about a diameter of γ if necessary) such that the images of B, C under the rigid
motion coincide with Y, Z respectively. So P -triangles ∆OBC and ∆OY Z are P -congruent,
since rotation about O and reflection about diameter of γ preserve hyperbolic length and
angle.
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Figure 11: Image of triangle under inversion in circle is similar.

Case 2. General case is reduced to Case 1.
Let α be the circle orthogonal to γ through A,B, and β the circle orthogonal to γ through

A,C. Then α, β meet at A′ outside γ, which is the inverse of A in γ by Proposition 5.3.
Then O,A, A′ are collinear and O ∗ A ∗ A′. Let σ be the circle of radius s with center A′,
where s2 = |A′A| · |A′O|. Then A is inside σ, O is outside σ, and O,A are inverses each
other in σ by definition of inversion in circle. So σ, γ intersect at two points G,H. Since
|AA′| = |OA′| − |OA|, we have

s2 = (|OA′| − |OA|) · |OA′| = |OA′|2 − |OA| · |OA′| = |OA′|2 − r2.

Thus |OA′|2 = r2 + s2 = |OH|2 + |A′H|2. The Pythagorean theorem implies that ∆OA′H is
a Euclidean right triangle with right angle at H. So σ is orthogonal to γ. See Figure 11.

Now the inversion in σ maps inside of γ onto itself, and in particular maps A to O. So the
inversion in σ maps the P -triangle ∆ABC onto a P -triangle ∆OB∗C∗. Clearly, P -triangles
∆ABC and ∆OB∗C∗ are P -congruent. Likewise, P -triangle ∆XY Z can be mapped onto a
P -triangle ∆OY ∗Z∗ by an inversion in a circle orthogonal to γ, and ∆OY ∗Z∗ is P -congruent
to ∆XY Z. Hence ∆OB∗C∗ and ∆OY ∗Z∗ are P -triangles, satisfying d(O,B∗) = d(O, Y ∗),
∠B∗OC∗ ∼= ∠Y ∗OZ∗, and d(O,C∗) = d(O,Z∗). So ∆OB∗C∗ and ∆OY ∗Z∗ are P -congruent
by Case 1. Therefore ∆OBC and ∆OY Z are P -congruent.

We then have the following theorem.

Theorem 5.11. Two P -triangles in the Poincaré disk bounded by a circle γ are P -congruent
if and only if they can be mapped onto each other by a rotation about the center O of γ, and
a succession of inversions in circles orthogonal to γ and in lines through the center of γ.

Theorem 5.12. Let d be Poincaré distance of point P to P -line l not through P inside
Poincaré disk bounded by circle γ of radius r. Let Π(d) denote the number of radians in the
angle of parallelism of limiting parallel rays through P . Then

e−d = tan[Π(d)/2].

Proof. Without loss of generality we may assume that l is the diameter of γ and PO is the
segment perpendicular to l with foot O on l. Let α be the angle between Euclidean ray
r(P,Q) and the limiting P -line δ parallel to l. Let t be the tangent to δ at P . Then t meets
l at R. Let S be the common end point of l and δ. Note that both l, δ are tangent to δ. So
∠RSP ∼= ∠RPS. Set α := ∠QPR = Π(d) and β := ∠RSP . Then α + 2β = π/2, that is,
β = π/4− α/2. Note that |OP | = r tan β. Then

d = d(O,P ) =

∣∣∣∣log
r(r − |OP |)
r(r + |OP |)

∣∣∣∣ = log
r + |OP |
r − |OP | = log

1 + tan β

1− tan β
,
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that is, ed = (1 + tan β)/(1− tan β). Since eıθ = cos θ + ı sin θ, then

eı(θ1+θ2) = cos(θ1 + θ2) + ı sin(θ1 + θ2),

eı(θ1+θ2) = eıθ1eıθ2 = cos θ1 cos θ2 − sin θ1 sin θ2 + ı(cos θ1 sin θ2 + sin θ1 cos θ2).

Thus

tan(θ1 + θ2) =
sin(θ1 + θ2)

cos(θ1 + θ2)
=

cos θ1 sin θ2 + sin θ1 cos θ2

cos θ1 cos θ2 − sin θ1 sin θ2

=
tan θ1 + tan θ2

1− tan θ1 tan θ2

.

So tan β = tan(π/4 − α/2) = (1 − tan(α/2))/(1 + tan(α/2)). Hence ed = 2
2 tan(α/2)

, that is,

e−d = tan(Π(d)/2).

6 Isomorphism between Poincaré model and Klein model

Let Σ be a sphere in Cartesian 3-dimensional Euclidean space R3, given by the equation

x2
1 + x2

2 + x2
3 = r2.

Let ∆ be the open disk on the plane x3 = 0, that is,

∆ = {(x1, x2, 0) ∈ R3 : x2
1 + x2

2 < r2},

whose boundary is the circle

γ = {(x1, x2, 0) : x2
1 + x2

2 = r2}.

We consider the map F : ∆ → ∆, induced by the stereographic projection through the lower
hemisphere

Σ− = {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = r2, x3 < 0}.

Simplicity let us use complex variable z = x1 + ıx2 to denote point (x1, x2) in ∆. Then F is
determined by

|F (z)| − |z|
|z| =

√
r2 − |F (z)|2

r
.

Squaring both sides, we have |F (z)|/|z| − 1]2 = 1− |F (z)|2/r2, that is,

|F (z)| · (|F (z)|(1/r2 + 1/|z|2)− 2/|z|) = 0.

11
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Figure 13: Stereographic projection

Since F (z) 6= 0 when z 6= 0, we further have |F (z)| = 2r2|z|/(r2 + |z|2), that is,

F (z) = 2r2z/(r2 + |z|2).
Writing in rectangular coordinates, we have

F (x1, x2) =
2r2

r2 + x2
1 + x2

2

(x1, x2).

Theorem 6.1. The stereographic projection is an isomorphism from the Poincaré model to
the Klein model. More specifically, given a circle δ orthogonal to γ, intersecting γ at P,Q.
If A is a point on the arc of δ from P to Q inside γ, then the ray r(O,A) meets the chord
PQ of γ at F (A).

Proof. Let C be the center of δ with coordinates (c1, c2). Since γ, δ meet orthogonally at
P,Q, the points O,P,Q, C lie on a circle σ with diameter OC, having center ( c1

2
, c2

2
) and

radius 1
2

√
c2
1 + c2

2. The equation of σ is

(
x1 − c1

2

)2

+
(
x2 − c2

2

)2

=
c2
1 + c2

2

4
, i.e., x2

1 + x2
2 = c1x1 + c2x2.

Then P,Q are the solutions of the system
{

x2
1 + x2

2 = c1x1 + c2x2

x2
1 + x2

2 = r2 , i.e.,

{
c1x1 + c2x2 = r2

x2
1 + x2

2 = r2 .

Clearly, line c1x1 + c2x2 = r2 passes though P,Q; it must be the equation of line PQ. Note

Q

O
A F(A)

C

P

Figure 14: The map between Poincaré model and Klein model.

that ∠OPC is a right angle; the Pythagorean theorem implies

|CP |2 = |OC|2 − |OP |2 = c2
1 + c2

2 − r2.
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The equation (x1 − c1)
2 + (x2 − c2)

2 = |CP |2 of δ becomes

x2
1 + x2

2 = 2c1x2 + 2c2x2 − r2.

Now if A = (a1, a2) lies on δ and F (A) = (b1, b2) is the image under F , then

a2
1 + a2

2 + r2 = 2c1a1 + 2c2a2 > 0,

and subsequently,

bj =
2r2aj

r2 + a2
1 + a2

2

=
r2aj

c1a1 + c2a2

, j = 1, 2.

Hence
c1b1 + c2b2 = r2,

which means that (b1, b2) lies on the line PQ.

Proposition 6.2. Given a point P in side a circle γ with center O and radius r, and its
inverse P ′ in γ. Let AB be a chord of γ with midpoint P . Then the circle δ with center P ′

and radius P ′A is orthogonal to γ. Moreover, the inverse of P in δ is O.

Proof. Note that |OA| · |OA′| = r2 and r2 − |OP |2 = |AP |2 = d2 − |PP ′|2.

7 Philosophical Implications

7.1 What is the geometry of physical space

If Euclidean geometry is consistent, so is hyperbolic geometry. Then two geometries are
equally consistent. Logically speaking, hyperbolic geometry deserves to be put on an equal
footing with Euclidean geometry. Engineering and architecture are evidence that Euclidean
geometry is extremely useful for ordinary measurement of distances that are not large. How-
ever, the representational accuracy of Euclidean geometry is less certain when deal with
larger distances. Because of experimental error, a physical experiment can never prove con-
clusively that space is Euclidean – it can prove only that space is non-Euclidean.

According to Einstein, space and time are inseparable and the geometry of spacetime
is affected by matter, so that light rays indeed curved by the gravitational attraction of
masses. Space is no longer conceived of as an empty Newtonian box whose contours are
unaffected by the rocks put into it. The problem is much more complicated than Euclidean
or non-Euclidean – neither of the geometries is adequate for the present conception of space.
This does not diminish the historical importance of Euclidean and non-Euclidean geometries.
Einstein said, “To this interpretation of [hyperbolic] geometry I attached great importance,
for should I not have acquainted with it, I never would have been able to develop the theory
of relativity.”

Henri Poincaré said: “If geometry were an experimental science, it would not be an
exact science. It would be subjected to continual revision . . . . The geometrical axioms are
therefore neither synthetic a priori intuitions nor experimental facts. They are conventions.
Our choice among all possible conventions is guided by experimental facts; but it remains
free, and is only limited by the necessity of avoiding every contradiction, and thus it is that
postulates may remain rigorously true even when experimental laws which have determined
their adoption are only approximate. In other words, the axioms of geometry (I do not speak
of those of arithmetic) are only definitions in disguise.”
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We might think that Euclidean geometry is the most convenient – it is for ordinary engi-
neering, but not for the theory of relativity. One school, which includes Newton, Helmboltz,
Russel, and Whitehead, contends that space has an intrinsic metric or standard measure-
ment. The other school, which includes Riemann, Poincaré, Clifford, and Einstein, contends
that a metric stipulated by convention. The discussion can become very subtle.

7.2 What is mathematics about?

Geometry is not about light rays, but the path of a light ray is one possible physical interpre-
tation of the undefined geometric term “line.” Bertrand Russell once said that “mathematics
is the subject in which we do not know we are talking about nor what we say is true.” This
is because certain primitive terms such as “point,” “line,” and “plane,” are undefined and
could just as well be replaced with other terms without affecting the validity of results.

Gottlob Frege (1848-1925), who is considered the founder of modern mathematical logic,
wrote to Hilbert: “I give the name of axioms to propositions which are true, but which are
not demonstrated because their knowledge proceeds from a source which is not logical, which
we may call space time. The truth of the axiom implies of course that they do not contradict
each other. That is to me the criterion of truth and existence.”

Euclidean and hyperbolic geometries were equally consistent, so they “exist” and are both
“true.” The discovery that Euclidean geometry was not “absolute truth” had a liberating
effect on mathematicians, who now feel free to invent any set of axioms they wish and deduce
conclusions from them. In fact, this freedom may account for the great increase in the scope
and generality of modern mathematics. In a 1961 address, Jean Dieudonné remarked on
Gauss’ discovery of non-Euclidean geometry: “[It] was a turning point of capital significance
in the history of mathematics, marking the first step in a new conception of the relation
between the real world and the mathematical notions supposed to account for it; with Gauss’
discovery, the rather naive point of view that mathematical objects were only “ideas” (in the
Platonic sense) of sensory objects became untenable, and gradually gave way to a clearer
comprehension of the much greater complexity of the question, wherein it seems to us today
that mathematics and reality are almost completely independent, and their contacts more
mysterious than ever.”

7.3 Controversy about foundation of mathematics

It would be misleading to say that mathematics is just a formal game played with symbols
and having no broader significance. Mathematicians do not arbitrarily make up axioms and
deduce their conclusions. Axioms must be lead to interesting and fruitful results. Of course,
some axioms that appear uninteresting may turn out to have surprising consequences – this
was the case with the hyperbolic axiom, which was virtually ignored during the lifetimes of
Gauss, Bolyai, and Lobachevsky. If, however, axiom systems do not bear interesting results,
they become neglected and eventually forgotten.

Arguing against the description of mathematics as a “formal game,” R. Courant and
H. Robbins (in their fine book What is Mathematics?) insist that “a serious threat to the
very life of science is implied in the assertion that mathematics is nothing but a system of
conclusions drawn from definitions and postulates that must be consistent but otherwise
may be created by the free will of the mathematician. If this description were accurate,
mathematics could not attract any intelligent person. It would be a game with definition,
rules and syllogisms, without motivation or goal.”

Hermann Weyl reamrked: “The construction of the mathematical mind are at the same
time free and necessary. The individual mathematician feels free to define his notions and to
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set up his axioms as he pleased. But the question is, will he get his fellow mathematicians
interested in the constructs of his imagination?”

Leopold Kronecker said: “God cerated whole numbers – all else is manmade.”
Axiom of Choice (AC): Given sets Si indexed by i ∈ I. There exist elements ai ∈ Si for

all i ∈ I.
Continuum Hypothesis (CH): No cardinal number between ℵ0 (the cardinality of the set

of positive integers) and c (the cardinal number of the set of real numbers).
Kurt Gödel created a model of the other A-Z axioms in which both AC and CH were

true; that demonstrated the impossibility of disproving them. In 1963, models were created
in which either AC or CH or both were false. So AC and CH are indepedent of the other
Z-F axioms and of each other. There exists an equally valid non-Cantorian set theory, just
as there is an equally valid non-Euclidean geometry.

Gödel’s Incompleteness Theorem: There will always be valid statements that cannot be
demonstrated from systems of axioms that are broad enough to include arithmetic. In other
words, Gödel provided a formal demonstration of the inadequacy of formal demonstration.
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